Referências
1.
Grami A. Discrete Probability. Em: Discrete Mathematics: Essentials and Applications. Elsevier; 2023:285–305. doi:10.1016/b978-0-12-820656-0.00016-2
2.
Viti A, Terzi A, Bertolaccini L. A practical overview on probability distributions. Journal of Thoracic Disease. 2015;7(3). https://jtd.amegroups.org/article/view/4086.
3.
Benford F. The Law of Anomalous Numbers. Proceedings of the American Philosophical Society. 1938;78(4):551–572. http://www.jstor.org/stable/984802. Acessado novembro 24, 2024.
4.
Tversky A, Kahneman D. Belief in the law of small numbers. Psychological Bulletin. 1971;76(2):105–110. doi:10.1037/h0031322
5.
Bishop DVM, Thompson J, Parker AJ. Can we shift belief in the ‘Law of Small Numbers’? Royal Society Open Science. 2022;9(3). doi:10.1098/rsos.211028
6.
Guy RK. The Strong Law of Small Numbers. The American Mathematical Monthly. 1988;95(8):697. doi:10.2307/2322249
7.
Guy RK. The Second Strong Law of Small Numbers. Mathematics Magazine. 1990;63(1):3–20. doi:10.1080/0025570x.1990.11977475
8.
Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean Journal of Anesthesiology. 2017;70(2):144. doi:10.4097/kjae.2017.70.2.144
9.
Galton F. Regression Towards Mediocrity in Hereditary Stature. The Journal of the Anthropological Institute of Great Britain and Ireland. 1886;15:246. doi:10.2307/2841583
10.
Barnett AG. Regression to the mean: what it is and how to deal with it. International Journal of Epidemiology. 2004;34(1):215–220. doi:10.1093/ije/dyh299
11.
Senn S. Francis Galton and Regression to the Mean. Significance. 2011;8(3):124–126. doi:10.1111/j.1740-9713.2011.00509.x
12.
Recchia D. regtomean: Regression Toward the Mean.; 2022. https://CRAN.R-project.org/package=regtomean.
13.
Altman DG, Bland JM. Statistics Notes: Units of analysis. BMJ. 1997;314(7098):1874–1874. doi:10.1136/bmj.314.7098.1874
14.
Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ. 1990;300(6719):230–235. doi:10.1136/bmj.300.6719.230
15.
Banerjee A, Chaudhury S. Statistics without tears: Populations and samples. Industrial Psychiatry Journal. 2010;19(1):60. doi:10.4103/0972-6748.77642
16.
Martínez-Mesa J, González-Chica DA, Duquia RP, Bonamigo RR, Bastos JL. Sampling: how to select participants in my research study? Anais Brasileiros de Dermatologia. 2016;91(3):326–330. doi:10.1590/abd1806-4841.20165254
17.
Bland JM, Altman DG. Statistics Notes: Bootstrap resampling methods. BMJ. 2015;350(jun02 13):h2622–h2622. doi:10.1136/bmj.h2622
18.
Amatuzzi MLL, Barreto M do CC, Litvoc J, Leme LEG. Linguagem metodológica: parte 1. Acta Ortopédica Brasileira. 2006;14(1):53–56. doi:10.1590/s1413-78522006000100012
19.
Amatuzzi MLL, Barreto M do CC, Litvoc J, Leme LEG. Linguagem metodológica: parte 2. Acta Ortopédica Brasileira. 2006;14(2):108–112. doi:10.1590/s1413-78522006000200012
20.
Munafò MR, Nosek BA, Bishop DVM, et al. A manifesto for reproducible science. Nature Human Behaviour. 2017;1(1). doi:10.1038/s41562-016-0021
21.
Wood M, Welch C. Are ‘Qualitative’ and ‘Quantitative’ Useful Terms for Describing Research? Methodological Innovations Online. 2010;5(1):56–71. doi:10.4256/mio.2010.0010
22.
Lall D. Mixed-Methods Research. Indian Journal of Continuing Nursing Education. 2021;22(2):143–147. doi:10.4103/ijcn.ijcn_107_21
23.
Schoonenboom J, Johnson RB. How to Construct a Mixed Methods Research Design. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie. 2017;69(S2):107–131. doi:10.1007/s11577-017-0454-1
24.
Rubin M, Donkin C. Exploratory hypothesis tests can be more compelling than confirmatory hypothesis tests. Philosophical Psychology. 2022;37(8):2019–2047. doi:10.1080/09515089.2022.2113771
25.
Späth C. From best practices to severe testing: A methodological response to Büsch and Loffing (2024). German Journal of Exercise and Sport Research. outubro 2025. doi:10.1007/s12662-025-01072-7
26.
Resnik DB, Shamoo AE. Reproducibility and Research Integrity. Accountability in Research. 2016;24(2):116–123. doi:10.1080/08989621.2016.1257387
27.
Hofner B, Schmid M, Edler L. Reproducible research in statistics: A review and guidelines for the Biometrical Journal. Biometrical Journal. 2015;58(2):416–427. doi:10.1002/bimj.201500156
28.
Mair P. Thou Shalt Be Reproducible! A Technology Perspective. Frontiers in Psychology. 2016;7. doi:10.3389/fpsyg.2016.01079
29.
Hinsen K. A data and code model for reproducible research and executable papers. Procedia Computer Science. 2011;4:579–588. doi:10.1016/j.procs.2011.04.061
30.
Gamble C, Krishan A, Stocken D, et al. Guidelines for the Content of Statistical Analysis Plans in Clinical Trials. JAMA. 2017;318(23):2337. doi:10.1001/jama.2017.18556
31.
Kahan BC, Hindley J, Edwards M, Cro S, Morris TP. The estimands framework: a primer on the ICH E9(R1) addendum. BMJ. janeiro 2024:e076316. doi:10.1136/bmj-2023-076316
32.
Ihaka R, Gentleman R. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics. 1996;5(3):299. doi:10.2307/1390807
33.
Nwanganga F, Chapple M. Introduction to R and RStudio. Em: Nwanganga F, Chapple M, orgs. Practical Machine Learning in R. John Wiley & Sons, Ltd; 2020:25–52. doi:10.1002/9781119591542.ch2
34.
R Core Team. The Comprehensive R Archive Network. 2021. https://cran.r-project.org.
35.
Allaire J, Xie Y, Dervieux C, et al. rmarkdown: Dynamic Documents for R.; 2023. https://CRAN.R-project.org/package=rmarkdown.
36.
Holmes DT, Mobini M, McCudden CR. Reproducible manuscript preparation with RMarkdown application to JMSACL and other Elsevier Journals. Journal of Mass Spectrometry and Advances in the Clinical Lab. 2021;22:8–16. doi:10.1016/j.jmsacl.2021.09.002
37.
Love J, Selker R, Marsman M, et al. JASP: Graphical Statistical Software for Common Statistical Designs. Journal of Statistical Software. 2019;88(2). doi:10.18637/jss.v088.i02
38.
ŞAHİN M, AYBEK E. Jamovi: An Easy to Use Statistical Software for the Social Scientists. International Journal of Assessment Tools in Education. 2020;6(4):670–692. doi:10.21449/ijate.661803
39.
Selker R, Love J, Dropmann D. jmv: The jamovi Analyses.; 2023. https://CRAN.R-project.org/package=jmv.
40.
Love J. jmvconnect: Connect to the jamovi Statistical Spreadsheet.; 2022. https://CRAN.R-project.org/package=jmvconnect.
41.
Racine JS. RStudio: A Platform-Independent IDE for R and Sweave. Journal of Applied Econometrics. 2011;27(1):167–172. doi:10.1002/jae.1278
42.
Aden-Buie G, Schloerke B, Allaire J, Rossell Hayes A. learnr: Interactive Tutorials for R.; 2023. https://CRAN.R-project.org/package=learnr.
43.
Schwab, Simon, Held, Leonhard. Statistical programming: Small mistakes, big impacts. Wiley-Blackwell Publishing, Inc. 2021. doi:10.5167/UZH-205154
44.
Eglen SJ, Marwick B, Halchenko YO, et al. Toward standard practices for sharing computer code and programs in neuroscience. Nature Neuroscience. 2017;20(6):770–773. doi:10.1038/nn.4550
45.
Xie Y. formatR: Format R Code Automatically.; 2022. https://CRAN.R-project.org/package=formatR.
46.
Müller K, Walthert L. styler: Non-Invasive Pretty Printing of R Code.; 2023. https://CRAN.R-project.org/package=styler.
47.
Hester J, Angly F, Hyde R, et al. lintr: A Linter for R Code.; 2023. https://CRAN.R-project.org/package=lintr.
48.
All R CRAN packages [Full List]. 2025. https://r-packages.io/packages. Acessado fevereiro 11, 2025.
49.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2023. https://www.R-project.org/.
50.
Wickham H, Danenberg P, Csárdi G, Eugster M. roxygen2: In-Line Documentation for R.; 2024. doi:10.32614/CRAN.package.roxygen2
51.
Trisovic A, Lau MK, Pasquier T, Crosas M. A large-scale study on research code quality and execution. Scientific Data. 2022;9(1). doi:10.1038/s41597-022-01143-6
52.
Gohel D, Ross N. officedown: Enhanced R Markdown Format for Word and PowerPoint.; 2023. https://CRAN.R-project.org/package=officedown.
53.
Xie Y. bookdown: Authoring Books and Technical Documents with R Markdown. Chapman; Hall/CRC; 2023. https://bookdown.org/yihui/bookdown/.
54.
Ioannidis JPA. How to Make More Published Research True. PLoS Medicine. 2014;11(10):e1001747. doi:10.1371/journal.pmed.1001747
55.
Krieger N, Perzynski A, Dalton J. projects: A Project Infrastructure for Researchers.; 2021. https://CRAN.R-project.org/package=projects.
56.
Schultze A, Tazare J. The role of programming code sharing in improving the transparency of medical research. BMJ. outubro 2023:p2402. doi:10.1136/bmj.p2402
57.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2023. https://www.R-project.org/.
58.
Zhao Y, Xiao N, Anderson K, Zhang Y. Electronic common technical document submission with analysis using R. Clinical Trials. 2022;20(1):89–92. doi:10.1177/17407745221123244
59.
Francisco Rodríguez-Sánchez, Connor P. Jackson, Shaurita D. Hutchins. grateful: Facilitate citation of R packages.; 2023. https://github.com/Pakillo/grateful.
60.
Shields M. Information Literacy, Statistical Literacy, Data Literacy. IASSIST Quarterly. 2005;28(2):6. doi:10.29173/iq790
61.
Gal I. Adults’ Statistical Literacy: Meanings, Components, Responsibilities. International Statistical Review. 2002;70(1):1–25. doi:10.1111/j.1751-5823.2002.tb00336.x
62.
Sharma S. Definitions and models of statistical literacy: a literature review. Open Review of Educational Research. 2017;4(1):118–133. doi:10.1080/23265507.2017.1354313
63.
Hidayati NA, Waluya SB, Rochmad, Wardono. Statistics literacy: what, why and how? Journal of Physics: Conference Series. 2020;1613(1):012080. doi:10.1088/1742-6596/1613/1/012080
64.
GOULD R. DATA LITERACY IS STATISTICAL LITERACY. STATISTICS EDUCATION RESEARCH JOURNAL. 2017;16(1):22–25. doi:10.52041/serj.v16i1.209
65.
CALLINGHAM R, WATSON JM. THE DEVELOPMENT OF STATISTICAL LITERACY AT SCHOOL. STATISTICS EDUCATION RESEARCH JOURNAL. 2017;16(1):181–201. doi:10.52041/serj.v16i1.223
66.
Koga S. Characteristics of statistical literacy skills from the perspective of critical thinking. Teaching Statistics. 2022;44(2):59–67. doi:10.1111/test.12302
67.
Wolff RF, Moons KGM, Riley RD, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Annals of Internal Medicine. 2019;170(1):51–58. doi:10.7326/m18-1376
68.
Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. agosto 2019:l4898. doi:10.1136/bmj.l4898
69.
Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. setembro 2017:j4008. doi:10.1136/bmj.j4008
70.
Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. outubro 2016:i4919. doi:10.1136/bmj.i4919
71.
Whiting P, Savović J, Higgins JPT, et al. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. Journal of Clinical Epidemiology. 2016;69:225–234. doi:10.1016/j.jclinepi.2015.06.005
72.
Whiting PF, Rutjes AWS, Westwood ME, et al. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine. 2011;155(8):529–536. doi:10.7326/0003-4819-155-8-201110180-00009
73.
Polin BA, Benisaac E. A longitudinal analysis of the hot hand and gambler’s fallacy biases. Judgment and Decision Making. 2023;18. doi:10.1017/jdm.2023.23
74.
Meng XL. Statistical paradises and paradoxes in big data (I): Law of large populations, big data paradox, and the 2016 US presidential election. The Annals of Applied Statistics. 2018;12(2). doi:10.1214/18-aoas1161sf
75.
Abelson RP. A variance explanation paradox: When a little is a lot. Psychological Bulletin. 1985;97(1):129–133. doi:10.1037/0033-2909.97.1.129
76.
Berkson J. Limitations of the Application of Fourfold Table Analysis to Hospital Data. Biometrics Bulletin. 1946;2(3):47. doi:10.2307/3002000
77.
Ellsberg D. Risk, Ambiguity, and the Savage Axioms. The Quarterly Journal of Economics. 1961;75(4):643. doi:10.2307/1884324
78.
Freedman DA, Freedman DA. A Note on Screening Regression Equations. The American Statistician. 1983;37(2):152–155. doi:10.1080/00031305.1983.10482729
79.
Freedman LS, Pee D. Return to a Note on Screening Regression Equations. The American Statistician. 1989;43(4):279. doi:10.2307/2685389
80.
Hand DJ. On Comparing Two Treatments. The American Statistician. 1992;46(3):190–192. doi:10.1080/00031305.1992.10475881
81.
LINDLEY DV. A STATISTICAL PARADOX. Biometrika. 1957;44(1-2):187–192. doi:10.1093/biomet/44.1-2.187
82.
Lord FM. A paradox in the interpretation of group comparisons. Psychological Bulletin. 1967;68(5):304–305. doi:10.1037/h0025105
83.
Lord FM. Statistical adjustments when comparing preexisting groups. Psychological Bulletin. 1969;72(5):336–337. doi:10.1037/h0028108
84.
Simpson EH. The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society: Series B (Methodological). 1951;13(2):238–241. doi:10.1111/j.2517-6161.1951.tb00088.x
85.
Blyth CR. On Simpson’s Paradox and the Sure-Thing Principle. Journal of the American Statistical Association. 1972;67(338):364–366. doi:10.1080/01621459.1972.10482387
86.
Pearl J. Comment: Understanding Simpson’s Paradox. The American Statistician. 2014;68(1):8–13. doi:10.1080/00031305.2014.876829
87.
Stein C. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION. Em: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume I. University of California Press; 1956:197–206. doi:10.1525/9780520313880-018
88.
James W, Stein C. Estimation with Quadratic Loss. Em: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. Berkeley, Calif.: University of California Press; 1961:361–379. http://projecteuclid.org/euclid.bsmsp/1200512173.
89.
De S, Sen A. The generalised Gamow-Stern problem. The Mathematical Gazette. 1996;80(488):345–348. doi:10.2307/3619568
90.
Feld SL. Why Your Friends Have More Friends Than You Do. American Journal of Sociology. 1991;96(6):1464–1477. doi:10.1086/229693
91.
John LK, Loewenstein G, Prelec D. Measuring the Prevalence of Questionable Research Practices With Incentives for Truth Telling. Psychological Science. 2012;23(5):524–532. doi:10.1177/0956797611430953
92.
Bausell RB. Too Much Medicine: Not Enough Health. Em: The Problem with Science: The Reproducibility Crisis and What to do About It. New York: Oxford University Press; 2021:56–C3.P203. doi:10.1093/oso/9780197536537.003.0004
93.
Neoh MJY, Carollo A, Lee A, Esposito G. Fifty years of research on questionable research practises in science: quantitative analysis of co-citation patterns. Royal Society Open Science. 2023;10(10). doi:10.1098/rsos.230677
94.
Kleinert S. COPE’s retraction guidelines. The Lancet. 2009;374(9705):1876–1877. doi:10.1016/s0140-6736(09)62074-2
95.
Kerr NL. HARKing: Hypothesizing After the Results are Known. Personality and Social Psychology Review. 1998;2(3):196–217. doi:10.1207/s15327957pspr0203_4
96.
Groot AD de. The meaning of “significance” for different types of research [translated and annotated by Eric-Jan Wagenmakers, Denny Borsboom, Josine Verhagen, Rogier Kievit, Marjan Bakker, Angelique Cramer, Dora Matzke, Don Mellenbergh, and Han L. J. van der Maas]. Acta Psychologica. 2014;148:188–194. doi:10.1016/j.actpsy.2014.02.001
97.
Andrade C. HARKing, Cherry-Picking, P-Hacking, Fishing Expeditions, and Data Dredging and Mining as Questionable Research Practices. The Journal of Clinical Psychiatry. 2021;82(1). doi:10.4088/jcp.20f13804
98.
Stefan AM, Schönbrodt FD. Big little lies: a compendium and simulation ofp-hacking strategies. Royal Society Open Science. 2023;10(2). doi:10.1098/rsos.220346
99.
Chuard PJC, Vrtílek M, Head ML, Jennions MD. Evidence that nonsignificant results are sometimes preferred: Reverse P-hacking or selective reporting? PLOS Biology. 2019;17(1):e3000127. doi:10.1371/journal.pbio.3000127
100.
Sasaki K, Yamada Y. SPARKing: Sample-size planning after the results are known. Frontiers in Human Neuroscience. 2023;17. doi:10.3389/fnhum.2023.912338
101.
Armitage P, McPherson CK, Rowe BC. Repeated Significance Tests on Accumulating Data. Journal of the Royal Statistical Society Series A (General). 1969;132(2):235. doi:10.2307/2343787
102.
Hutton JL, Williamson PR. Bias in Meta-Analysis Due to Outcome Variable Selection Within Studies. Journal of the Royal Statistical Society Series C: Applied Statistics. 2000;49(3):359–370. doi:10.1111/1467-9876.00197
103.
Horton R. The rhetoric of research. BMJ. 1995;310(6985):985–987. doi:10.1136/bmj.310.6985.985
104.
Chiu K, Grundy Q, Bero L. ‘Spin’ in published biomedical literature: A methodological systematic review. Boutron I, org. PLOS Biology. 2017;15(9):e2002173. doi:10.1371/journal.pbio.2002173
105.
Picano E. Who is the author: genuine, honorary, ghost, gold, and fake authors? Exploration of Cardiology. 2024;2(3):88–96. doi:10.37349/ec.2024.00024
106.
Montori VM, Smieja M, Guyatt GH. Publication Bias: A Brief Review for Clinicians. Mayo Clinic Proceedings. 2000;75(12):1284–1288. doi:10.4065/75.12.1284
107.
Nosek BA, Ebersole CR, DeHaven AC, Mellor DT. The preregistration revolution. Proceedings of the National Academy of Sciences. 2018;115(11):2600–2606. doi:10.1073/pnas.1708274114
108.
P. Simmons J, D. Nelson L, Simonsohn U. Pre-registration: Why and How. Journal of Consumer Psychology. 2021;31(1):151–162. doi:10.1002/jcpy.1208
109.
Hartgerink C, Aust F. retractcheck: Retraction Scanner.; 2025. https://github.com/chartgerink/retractcheck.
110.
Altman DG, Bland JM. Statistics notes Variables and parameters. BMJ. 1999;318(7199):1667–1667. doi:10.1136/bmj.318.7199.1667
111.
Vetter TR. Fundamentals of Research Data and Variables. Anesthesia & Analgesia. 2017;125(4):1375–1380. doi:10.1213/ane.0000000000002370
112.
Ali Z, Bhaskar Sb. Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia. 2016;60(9):662. doi:10.4103/0019-5049.190623
113.
Dettori JR, Norvell DC. The Anatomy of Data. Global Spine Journal. 2018;8(3):311–313. doi:10.1177/2192568217746998
114.
Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size. Indian Dermatology Online Journal. 2019;10(1):82. doi:10.4103/idoj.idoj_468_18
115.
Barkan H. Statistics in clinical research: Important considerations. Annals of Cardiac Anaesthesia. 2015;18(1):74. doi:10.4103/0971-9784.148325
116.
Bland JM, Altman DG. Statistics Notes: Transforming data. BMJ. 1996;312(7033):770–770. doi:10.1136/bmj.312.7033.770
117.
Fedorov V, Mannino F, Zhang R. Consequences of dichotomization. Pharmaceutical Statistics. 2009;8(1):50–61. doi:10.1002/pst.331
118.
Osborne J. Improving your data transformations: Applying the Box-Cox transformation. University of Massachusetts Amherst. 2010. doi:10.7275/QBPC-GK17
119.
Box GEP, Cox DR. An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological). 1964;26(2):211–243. doi:10.1111/j.2517-6161.1964.tb00553.x
120.
Venables WN, Ripley BD. Modern Applied Statistics with S. Springer; 2002. https://www.stats.ox.ac.uk/pub/MASS4/.
121.
MacCallum RC, Zhang S, Preacher KJ, Rucker DD. On the practice of dichotomization of quantitative variables. Psychological Methods. 2002;7(1):19–40. doi:10.1037/1082-989x.7.1.19
122.
Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ. 2006;332(7549):1080.1. doi:10.1136/bmj.332.7549.1080
123.
Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Statistics in Medicine. 2005;25(1):127–141. doi:10.1002/sim.2331
124.
Collins GS, Ogundimu EO, Cook JA, Manach YL, Altman DG. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model. Statistics in Medicine. 2016;35(23):4124–4135. doi:10.1002/sim.6986
125.
Nelson SLP, Ramakrishnan V, Nietert PJ, Kamen DL, Ramos PS, Wolf BJ. An evaluation of common methods for dichotomization of continuous variables to discriminate disease status. Communications in Statistics – Theory and Methods. 2017;46(21):10823–10834. doi:10.1080/03610926.2016.1248783
126.
Bennette C, Vickers A. Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents. BMC Medical Research Methodology. 2012;12(1). doi:10.1186/1471-2288-12-21
127.
Barnier J, Briatte F, Larmarange J. questionr: Functions to Make Surveys Processing Easier.; 2023. https://CRAN.R-project.org/package=questionr.
128.
Aguinis H, Pierce CA, Culpepper SA. Scale Coarseness as a Methodological Artifact. Organizational Research Methods. 2008;12(4):623–652. doi:10.1177/1094428108318065
129.
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. doi:10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3
130.
Strobl C, Boulesteix AL, Augustin T. Unbiased split selection for classification trees based on the Gini Index. Computational Statistics & Data Analysis. 2007;52(1):483–501. doi:10.1016/j.csda.2006.12.030
131.
Pearson K. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1900;50(302):157–175. doi:10.1080/14786440009463897
132.
Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive Veterinary Medicine. 2000;45(1-2):23–41. doi:10.1016/s0167-5877(00)00115-x
133.
Fleiss JL. Measuring nominal scale agreement among many raters. Psychological Bulletin. 1971;76(5):378–382. doi:10.1037/h0031619
134.
R Core Team. R: A Language and Environment for Statistical Computing.; 2025. https://www.R-project.org/.
135.
Olson K. What Are Data? Qualitative Health Research. 2021;31(9):1567–1569. doi:10.1177/10497323211015960
136.
Smeden M van. A Very Short List of Common Pitfalls in Research Design, Data Analysis, and Reporting. PRiMER. 2022;6. doi:10.22454/PRiMER.2022.511416
137.
Baillie M, Cessie S le, Schmidt CO, Lusa L, Huebner M. Ten simple rules for initial data analysis. PLOS Computational Biology. 2022;18(2):e1009819. doi:10.1371/journal.pcbi.1009819
138.
Buttliere B. Adopting standard variable labels solves many of the problems with sharing and reusing data. Methodological Innovations. 2021;14(2):205979912110266. doi:10.1177/20597991211026616
139.
Pebesma E, Mailund T, Hiebert J. Measurement Units in R. The R Journal. 2016;8. doi:10.32614/RJ-2016-061
140.
Firke S. janitor: Simple Tools for Examining and Cleaning Dirty Data.; 2023. https://CRAN.R-project.org/package=janitor.
141.
Harrell Jr FE. Hmisc: Harrell Miscellaneous.; 2023. https://CRAN.R-project.org/package=Hmisc.
142.
Reese A. Databases and Documenting Data. Significance. 2007;4(4):184–186. doi:10.1111/j.1740-9713.2007.00265.x
143.
Bryer J, Speerschneider K. likert: Analysis and Visualization Likert Items.; 2016. https://CRAN.R-project.org/package=likert.
144.
Larmarange J. ggstats: Extension to ggplot2 for Plotting Stats.; 2025. doi:10.32614/CRAN.package.ggstats
145.
Ferris TLJ. A new definition of measurement. Measurement. 2004;36(1):101–109. doi:10.1016/j.measurement.2004.03.001
146.
Healy MJR, Goldstein H. Regression to the mean. Annals of Human Biology. 1978;5(3):277–280. doi:10.1080/03014467800002891
147.
Altman DG, Bland JM. Measurement in Medicine: The Analysis of Method Comparison Studies. The Statistician. 1983;32(3):307. doi:10.2307/2987937
148.
Menditto A, Patriarca M, Magnusson B. Understanding the meaning of accuracy, trueness and precision. Accreditation and Quality Assurance. 2006;12(1):45–47. doi:10.1007/s00769-006-0191-z
149.
Streiner DL, Norman GR. “Precision” and “Accuracy”: Two Terms That Are Neither. Journal of Clinical Epidemiology. 2006;59(4):327–330. doi:10.1016/j.jclinepi.2005.09.005
150.
Tierney N, Cook D. Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations. Journal of Statistical Software. 2023;105(7). doi:10.18637/jss.v105.i07
151.
Hammill D. DataEditR: An Interactive Editor for Viewing, Entering, Filtering & Editing Data.; 2022. https://CRAN.R-project.org/package=DataEditR.
152.
Broman KW, Woo KH. Data Organization in Spreadsheets. The American Statistician. 2018;72(1):2–10. doi:10.1080/00031305.2017.1375989
153.
Juluru K, Eng J. Use of Spreadsheets for Research Data Collection and Preparation: Academic Radiology. 2015;22(12):1592–1599. doi:10.1016/j.acra.2015.08.024
154.
Dowle M, Srinivasan A. data.table: Extension of ‘data.frame‘.; 2023. https://CRAN.R-project.org/package=data.table.
155.
Altman DG, Bland JM. Missing data. BMJ. 2007;334(7590):424–424. doi:10.1136/bmj.38977.682025.2c
156.
Heymans MW, Twisk JWR. Handling missing data in clinical research. Journal of Clinical Epidemiology. setembro 2022. doi:10.1016/j.jclinepi.2022.08.016
157.
Carpenter JR, Smuk M. Missing data: A statistical framework for practice. Biometrical Journal. 2021;63(5):915–947. doi:10.1002/bimj.202000196
158.
Yanagida T. misty: Miscellaneous Functions.; 2023. https://CRAN.R-project.org/package=misty.
159.
Little RJA. A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association. 1988;83(404):1198–1202. doi:10.1080/01621459.1988.10478722
160.
Tierney N, Cook D. Expanding Tidy Data Principles to Facilitate Missing Data Exploration, Visualization and Assessment of Imputations. Journal of Statistical Software. 2023;105(7):1–31. doi:10.18637/jss.v105.i07
161.
Akl EA, Shawwa K, Kahale LA, et al. Reporting missing participant data in randomised trials: systematic survey of the methodological literature and a proposed guide. BMJ Open. 2015;5(12):e008431. doi:10.1136/bmjopen-2015-008431
162.
Austin PC, Buuren S van. Logistic regression vs. predictive mean matching for imputing binary covariates. Statistical Methods in Medical Research. setembro 2023. doi:10.1177/09622802231198795
163.
Buuren S van, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software. 2011;45:1–67. doi:10.18637/jss.v045.i03
164.
Rubin DB. Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations. Journal of Business & Economic Statistics. 1986;4(1):87. doi:10.2307/1391390
165.
Little RJA. Missing-Data Adjustments in Large Surveys. Journal of Business & Economic Statistics. 1988;6(3):287–296. doi:10.1080/07350015.1988.10509663
166.
Robitzsch A, Grund S. miceadds: Some Additional Multiple Imputation Functions, Especially for mice.; 2023. https://CRAN.R-project.org/package=miceadds.
167.
FitzJohn R. ids: Generate Random Identifiers.; 2017. https://CRAN.R-project.org/package=ids.
168.
Brown C. hash: Full Featured Implementation of Hash Tables/Associative Arrays/Dictionaries.; 2023. https://CRAN.R-project.org/package=hash.
169.
Hendricks P. anonymizer: Anonymize Data Containing Personally Identifiable Information.; 2023. https://github.com/paulhendricks/anonymizer.
170.
Lucas DE with contributions by A, Tuszynski J, Bengtsson H, et al. digest: Create Compact Hash Digests of R Objects.; 2023. https://CRAN.R-project.org/package=digest.
171.
Nowok B, Raab GM, Dibben C. synthpop: Bespoke Creation of Synthetic Data in R. Journal of Statistical Software. 2016;74. doi:10.18637/jss.v074.i11
172.
S M. Frequency distribution. Journal of Pharmacology and Pharmacotherapeutics. 2011;2(1):54–56. doi:10.4103/0976-500x.77120
173.
Sturges HA. The Choice of a Class Interval. Journal of the American Statistical Association. 1926;21(153):65–66. doi:10.1080/01621459.1926.10502161
174.
SCOTT DW. On optimal and data-based histograms. Biometrika. 1979;66(3):605–610. doi:10.1093/biomet/66.3.605
175.
Freedman D, Diaconis P. On the histogram as a density estimator:L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 1981;57(4):453–476. doi:10.1007/bf01025868
176.
R Core Team. R: A Language and Environment for Statistical Computing.; 2023. https://www.R-project.org/.
177.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2016. https://ggplot2.tidyverse.org.
178.
Kay M. ggdist: Visualizations of Distributions and Uncertainty in the Grammar of Graphics. IEEE Transactions on Visualization and Computer Graphics. 2024;30(1):414–424. doi:10.1109/TVCG.2023.3327195
179.
Tang Y, Horikoshi M, Li W. ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages. Vol 8.; 2016. doi:10.32614/RJ-2016-060
180.
Rochon J, Gondan M, Kieser M. To test or not to test: Preliminary assessment of normality when comparing two independent samples. BMC Medical Research Methodology. 2012;12(1). doi:10.1186/1471-2288-12-81
181.
Greenhalgh T. How to read a paper: Statistics for the non-statistician. I: Different types of data need different statistical tests. BMJ. 1997;315(7104):364–366. doi:10.1136/bmj.315.7104.364
182.
Schmider E, Ziegler M, Danay E, Beyer L, Bühner M. Is It Really Robust? Methodology. 2010;6(4):147–151. doi:10.1027/1614-2241/a000016
183.
Kanji G. 100 Statistical Tests. SAGE Publications Ltd; 2006. doi:10.4135/9781849208499
184.
Curran-Everett D. Explorations in statistics: standard deviations and standard errors. Advances in Physiology Education. 2008;32(3):203–208. doi:10.1152/advan.90123.2008
185.
Altman DG, Bland JM. Statistics Notes: Quartiles, quintiles, centiles, and other quantiles. BMJ. 1994;309(6960):996–996. doi:10.1136/bmj.309.6960.996
186.
Krzywinski M, Altman N. Error bars. Nature Methods. 2013;10(10):921–922. doi:10.1038/nmeth.2659
187.
Cumming G, Fidler F, Vaux DL. Error bars in experimental biology. The Journal of Cell Biology. 2007;177(1):7–11. doi:10.1083/jcb.200611141
188.
S. M. Measures of central tendency: The mean. Journal of Pharmacology and Pharmacotherapeutics. 2011;2(2):140–142. doi:10.4103/0976-500x.81920
189.
S. M. Measures of central tendency: Median and mode. Journal of Pharmacology and Pharmacotherapeutics. 2011;2(3):214–215. doi:10.4103/0976-500x.83300
190.
Manikandan S. Measures of dispersion. Journal of Pharmacology and Pharmacotherapeutics. 2011;2(4):315–316. doi:10.4103/0976-500x.85931
191.
Sahai H, Misra S. Definitions of Sample Variance: Some Teaching Problems to be Overcome. The Statistician. 1992;41(1):55. doi:10.2307/2348636
192.
Leys C, Delacre M, Mora YL, Lakens D, Ley C. How to Classify, Detect, and Manage Univariate and Multivariate Outliers, With Emphasis on Pre-Registration. International Review of Social Psychology. 2019;32(1). doi:10.5334/irsp.289
193.
Rousseeuw PJ, Hubert M. Robust statistics for outlier detection. WIREs Data Mining and Knowledge Discovery. 2011;1(1):73–79. doi:10.1002/widm.2
194.
Daszykowski M, Kaczmarek K, Vander Heyden Y, Walczak B. Robust statistics in data analysis A review. Chemometrics and Intelligent Laboratory Systems. 2007;85(2):203–219. doi:10.1016/j.chemolab.2006.06.016
195.
Chatfield C. Exploratory data analysis. European Journal of Operational Research. 1986;23(1):5–13. doi:10.1016/0377-2217(86)90209-2
196.
Ferketich S, Verran J. Technical Notes. Western Journal of Nursing Research. 1986;8(4):464–466. doi:10.1177/019394598600800409
197.
Landis SC, Amara SG, Asadullah K, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 2012;490(7419):187–191. doi:10.1038/nature11556
198.
Huebner M, Vach W, Cessie S le. A systematic approach to initial data analysis is good research practice. The Journal of Thoracic and Cardiovascular Surgery. 2016;151(1):25–27. doi:10.1016/j.jtcvs.2015.09.085
199.
Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution. 2009;1(1):3–14. doi:10.1111/j.2041-210x.2009.00001.x
200.
Krasser R. explore: Simplifies Exploratory Data Analysis.; 2023. https://CRAN.R-project.org/package=explore.
201.
Petersen AH, Ekstrøm CT. dataMaid: Your Assistant for Documenting Supervised Data Quality Screening in R. Journal of Statistical Software. 2019;90. doi:10.18637/jss.v090.i06
202.
Cui B. DataExplorer: Automate Data Exploration and Treatment.; 2020. https://CRAN.R-project.org/package=DataExplorer.
203.
Dayanand Ubrangala, R K, Prasad Kondapalli R, Putatunda S. SmartEDA: Summarize and Explore the Data.; 2022. https://CRAN.R-project.org/package=SmartEDA.
204.
Mock T. gtExtras: Extending gt for Beautiful HTML Tables.; 2023. https://CRAN.R-project.org/package=gtExtras.
205.
Nijs V. radiant: Business Analytics using R and Shiny.; 2023. https://CRAN.R-project.org/package=radiant.
206.
Behrens JT. Principles and procedures of exploratory data analysis. Psychological Methods. 1997;2(2):131–160. doi:10.1037/1082-989x.2.2.131
207.
Prunello M, Mari G. ggcleveland: Implementation of Plots from Cleveland’s Visualizing Data Book.; 2021. doi:10.32614/CRAN.package.ggcleveland
208.
Gerring J. Mere Description. British Journal of Political Science. 2012;42(4):721–746. doi:10.1017/s0007123412000130
209.
Cummings P, Rivara FP. Reporting Statistical Information in Medical Journal Articles. Archives of Pediatrics & Adolescent Medicine. 2003;157(4):321. doi:10.1001/archpedi.157.4.321
210.
Cole TJ. Setting number of decimal places for reporting risk ratios: rule of four. BMJ. 2015;350(apr27 3):h1845–h1845. doi:10.1136/bmj.h1845
211.
Cole TJ. Too many digits: the presentation of numerical data. Archives of Disease in Childhood. 2015;100(7):608–609. doi:10.1136/archdischild-2014-307149
212.
Weissgerber TL, Winham SJ, Heinzen EP, et al. Reveal, Don’t Conceal. Circulation. 2019;140(18):1506–1518. doi:10.1161/circulationaha.118.037777
213.
Inskip H, Ntani G, Westbury L, et al. Getting started with tables. Archives of Public Health. 2017;75(1). doi:10.1186/s13690-017-0180-1
214.
Kwak SG, Kang H, Kim JH, et al. The principles of presenting statistical results: Table. Korean Journal of Anesthesiology. 2021;74(2):115–119. doi:10.4097/kja.20582
215.
Sjoberg DD, Whiting K, Curry M, Lavery JA, Larmarange J. Reproducible Summary Tables with the gtsummary Package. The R Journal. 2021;13:570–580. doi:10.32614/RJ-2021-053
216.
Rich B. table1: Tables of Descriptive Statistics in HTML.; 2023. https://CRAN.R-project.org/package=table1.
217.
Gohel D, Skintzos P. flextable: Functions for Tabular Reporting.; 2023. https://CRAN.R-project.org/package=flextable.
218.
Thériault R. rempsyc: Convenience functions for psychology. Journal of Open Source Software. 2023;8:5466. doi:10.21105/joss.05466
219.
Barnett A. Automated detection of over- and under-dispersion in baseline tables in randomised controlled trials. F1000Research. 2023;11:783. doi:10.12688/f1000research.123002.2
220.
Westreich D, Greenland S. The Table 2 Fallacy: Presenting and Interpreting Confounder and Modifier Coefficients. American Journal of Epidemiology. 2013;177(4):292–298. doi:10.1093/aje/kws412
221.
Chen H, Lu Y, Slye N. Testing for baseline differences in clinical trials. International Journal of Clinical Trials. 2020;7(2):150. doi:10.18203/2349-3259.ijct20201720
222.
Pijls BG. The Table I Fallacy: P Values in Baseline Tables of Randomized Controlled Trials. Journal of Bone and Joint Surgery. 2022;104(16):e71. doi:10.2106/jbjs.21.01166
223.
Hayes-Larson E, Kezios KL, Mooney SJ, Lovasi G. Who is in this study, anyway? Guidelines for a useful Table 1. Journal of Clinical Epidemiology. 2019;114:125–132. doi:10.1016/j.jclinepi.2019.06.011
224.
Bandoli G, Palmsten K, Chambers CD, Jelliffe-Pawlowski LL, Baer RJ, Thompson CA. Revisiting the Table 2 fallacy: A motivating example examining preeclampsia and preterm birth. Paediatric and Perinatal Epidemiology. 2018;32(4):390–397. doi:10.1111/ppe.12474
225.
Midway SR. Principles of Effective Data Visualization. Patterns. 2020;1(9):100141. doi:10.1016/j.patter.2020.100141
226.
Park JH, Lee DK, Kang H, et al. The principles of presenting statistical results using figures. Korean Journal of Anesthesiology. 2022;75(2):139–150. doi:10.4097/kja.21508
227.
Vandemeulebroecke M, Baillie M, Carr D, et al. How can we make better graphs? An initiative to increase the graphical expertise and productivity of quantitative scientists. Pharmaceutical Statistics. 2018;18(1):106–114. doi:10.1002/pst.1912
228.
Sievert C. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman; Hall/CRC; 2020. https://plotly-r.com.
229.
Wei T, Simko V. R package corrplot: Visualization of a Correlation Matrix.; 2024. https://github.com/taiyun/corrplot.
230.
Xiao N. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for ggplot2.; 2023. https://CRAN.R-project.org/package=ggsci.
231.
Urbanek S, Johnson K. tiff: Read and Write TIFF Images.; 2022. https://CRAN.R-project.org/package=tiff.
232.
Wiebels K, Moreau D. Dynamic Data Visualizations to Enhance Insight and Communication Across the Life Cycle of a Scientific Project. Advances in Methods and Practices in Psychological Science. 2023;6(3). doi:10.1177/25152459231160103
233.
Pedersen TL, Robinson D. gganimate: A Grammar of Animated Graphics.; 2025. doi:10.32614/CRAN.package.gganimate
234.
Mair P, Wilcox R. Robust Statistical Methods in R Using the WRS2 Package. Behavior Research Methods. 2020;52:464–488. doi:10.3758/s13428-019-01246-w
235.
Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology. 2013;49(4):764–766. doi:10.1016/j.jesp.2013.03.013
236.
Leys C, Klein O, Dominicy Y, Ley C. Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance. Journal of Experimental Social Psychology. 2018;74:150–156. doi:10.1016/j.jesp.2017.09.011
237.
Tukey JW, McLaughlin DH. Less Vulnerable Confidence and Significance Procedures for Location Based on a Single Sample: Trimming/Winsorization 1. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002). 1963;25(3):331–352. http://www.jstor.org/stable/25049278. Acessado abril 11, 2025.
238.
Komsta L. outliers: Tests for Outliers.; 2022. https://CRAN.R-project.org/package=outliers.
239.
Loh PL. A Theoretical Review of Modern Robust Statistics. Annual Review of Statistics and Its Application. 2025;12(1):477–496. doi:10.1146/annurev-statistics-112723-034446
240.
Mair P, Wilcox R, Indrajeet P. A Collection of Robust Statistical Methods.; 2025. https://CRAN.R-project.org/package=WRS2.
241.
Lüdecke D. ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. Journal of Open Source Software. 2018;3:772. doi:10.21105/joss.00772
242.
Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry. 2015;27(2):130–135. doi:10.11919/j.issn.1002-0829.215044
243.
Hozo I, Guyatt G, Djulbegovic B. Decision curve analysis based on summary data. Journal of Evaluation in Clinical Practice. 2023;30(2):281–289. doi:10.1111/jep.13945
244.
Vickers AJ, Calster B van, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagnostic and Prognostic Research. 2019;3(1). doi:10.1186/s41512-019-0064-7
245.
AALEN OO, FRIGESSI A. What can Statistics Contribute to a Causal Understanding? Scandinavian Journal of Statistics. 2007;34(1):155–168. doi:10.1111/j.1467-9469.2006.00549.x
246.
Matute H, Blanco F, Yarritu I, Díaz-Lago M, Vadillo MA, Barberia I. Illusions of causality: how they bias our everyday thinking and how they could be reduced. Frontiers in Psychology. 2015;6. doi:10.3389/fpsyg.2015.00888
247.
Vickers AJ, Assel M, Dunn RL, et al. Guidelines for Reporting Observational Research in Urology: The Importance of Clear Reference to Causality. European Urology. 2023;84(2):147–151. doi:10.1016/j.eururo.2023.04.027
248.
Hill AB. The Environment and Disease: Association or Causation? Proceedings of the Royal Society of Medicine. 1965;58(5):295–300. doi:10.1177/003591576505800503
249.
Rothman KJ, Greenland S. H ill’s Criteria for Causality. Encyclopedia of Biostatistics. fevereiro 2005. doi:10.1002/0470011815.b2a03072
250.
Shimonovich M, Pearce A, Thomson H, Keyes K, Katikireddi SV. Assessing causality in epidemiology: revisiting Bradford Hill to incorporate developments in causal thinking. European Journal of Epidemiology. 2020;36(9):873–887. doi:10.1007/s10654-020-00703-7
251.
Textor J, Zander B van der, Gilthorpe MS, Liskiewicz M, Ellison GT. Robust causal inference using directed acyclic graphs: the R package dagitty. International Journal of Epidemiology. 2016;45:1887–1894. doi:10.1093/ije/dyw341
252.
Barrett M. ggdag: Analyze and Create Elegant Directed Acyclic Graphs.; 2024. https://CRAN.R-project.org/package=ggdag.
253.
Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. Journal of Open Source Software. 2021;6:3139. doi:10.21105/joss.03139
254.
Silge J, Robinson D. tidytext: Text Mining and Analysis Using Tidy Data Principles in R. The Journal of Open Source Software. 2016;1. doi:10.21105/joss.00037
255.
Greenland S. Modeling and variable selection in epidemiologic analysis. American Journal of Public Health. 1989;79(3):340–349. doi:10.2105/ajph.79.3.340
256.
Breznau N, Rinke EM, Wuttke A, et al. Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty. Proceedings of the National Academy of Sciences. 2022;(44):e2203150119. doi:10.1073/pnas.2203150119
257.
Dwivedi AK, Shukla R. Evidence-based statistical analysis and methods in biomedical research (SAMBR) checklists according to design features. CANCER REPORTS. 2019;3(4). doi:10.1002/cnr2.1211
258.
Dwivedi AK. How to Write Statistical Analysis Section in Medical Research. Journal of Investigative Medicine. 2022;70(8):1759–1770. doi:10.1136/jim-2022-002479
259.
Kim N, Fischer AH, Dyring-Andersen B, Rosner B, Okoye GA. Research Techniques Made Simple: Choosing Appropriate Statistical Methods for Clinical Research. Journal of Investigative Dermatology. 2017;137(10):e173–e178. doi:10.1016/j.jid.2017.08.007
260.
Marusteri M, Bacarea V. Comparing groups for statistical differences: how to choose the right statistical test? Biochemia Medica. 2010:15–32. doi:10.11613/bm.2010.004
261.
Mishra P, Pandey C, Singh U, Keshri A, Sabaretnam M. Selection of appropriate statistical methods for data analysis. Annals of Cardiac Anaesthesia. 2019;22(3):297. doi:10.4103/aca.aca_248_18
262.
Ray A, Najmi A, Sadasivam B. How to choose and interpret a statistical test? An update for budding researchers. Journal of Family Medicine and Primary Care. 2021;10(8):2763. doi:10.4103/jfmpc.jfmpc_433_21
263.
Nayak B, Hazra A. How to choose the right statistical test? Indian Journal of Ophthalmology. 2011;59(2):85. doi:10.4103/0301-4738.77005
264.
Shankar S, Singh R. Demystifying statistics: How to choose a statistical test? Indian Journal of Rheumatology. 2014;9(2):77–81. doi:10.1016/j.injr.2014.04.002
265.
Curran-Everett D. Explorations in statistics: hypothesis tests and P values. Advances in Physiology Education. 2009;33(2):81–86. doi:10.1152/advan.90218.2008
266.
Goodman SN. Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy. Annals of Internal Medicine. 1999;130(12):995. doi:10.7326/0003-4819-130-12-199906150-00008
267.
McCaskey K, Rainey C. Substantive Importance and the Veil of Statistical Significance. Statistics, Politics and Policy. 2015;6(1-2). doi:10.1515/spp-2015-0001
268.
Uygun Tunç D, Tunç MN, Lakens D. The epistemic and pragmatic function of dichotomous claims based on statistical hypothesis tests. Theory & Psychology. 2023;33(3):403–423. doi:10.1177/09593543231160112
269.
Vandenbroucke JP, Pearce N. From ideas to studies: how to get ideas and sharpen them into research questions. Clinical Epidemiology. 2018;Volume 10:253–264. doi:10.2147/clep.s142940
270.
Lakens D, Scheel AM, Isager PM. Equivalence Testing for Psychological Research: A Tutorial. Advances in Methods and Practices in Psychological Science. 2018;1(2):259–269. doi:10.1177/2515245918770963
271.
Sullivan GM, Feinn R. Using Effect Sizeor Why the P Value Is Not Enough. Journal of Graduate Medical Education. 2012;4(3):279–282. doi:10.4300/jgme-d-12-00156.1
272.
Neyman J. Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences. 1937;236(767):333–380. doi:10.1098/rsta.1937.0005
273.
Goodman SN. Aligning statistical and scientific reasoning. Science. 2016;352(6290):1180–1181. doi:10.1126/science.aaf5406
274.
Greenland S, Senn SJ, Rothman KJ, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. European Journal of Epidemiology. 2016;31(4):337–350. doi:10.1007/s10654-016-0149-3
275.
Cumming G, Finch S. Inference by Eye: Confidence Intervals and How to Read Pictures of Data. American Psychologist. 2005;60(2):170–180. doi:10.1037/0003-066x.60.2.170
276.
Greenhalgh T. How to read a paper: Statistics for the non-statistician. II: ̈Significanẗ relations and their pitfalls. BMJ. 1997;315(7105):422–425. doi:10.1136/bmj.315.7105.422
277.
Weintraub PG. The Importance of Publishing Negative Results. Journal of Insect Science. 2016;16(1):109. doi:10.1093/jisesa/iew092
278.
Altman DG, Bland JM. Statistics notes: Absence of evidence is not evidence of absence. BMJ. 1995;311(7003):485–485. doi:10.1136/bmj.311.7003.485
279.
Gelman A, Carlin J. Beyond Power Calculations. Perspectives on Psychological Science. 2014;9(6):641–651. doi:10.1177/1745691614551642
280.
Lu J, Qiu Y, Deng A. A note on Type S/M errors in hypothesis testing. British Journal of Mathematical and Statistical Psychology. 2018;72(1):1–17. doi:10.1111/bmsp.12132
281.
Kim HY. Statistical notes for clinical researchers: effect size. Restorative Dentistry & Endodontics. 2015;40(4):328. doi:10.5395/rde.2015.40.4.328
282.
Aragon TJ. epitools: Epidemiology Tools.; 2020. doi:10.32614/CRAN.package.epitools
283.
Ben-Shachar MS, Lüdecke D, Makowski D. effectsize: Estimation of Effect Size Indices and Standardized Parameters. Journal of Open Source Software. 2020;5:2815. doi:10.21105/joss.02815
284.
Champely S. pwr: Basic Functions for Power Analysis.; 2020. https://CRAN.R-project.org/package=pwr.
285.
GREENLAND S, SCHLESSELMAN JJ, CRIQUI MH. THE FALLACY OF EMPLOYING STANDARDIZED REGRESSION COEFFICIENTS AND CORRELATIONS AS MEASURES OF EFFECT. American Journal of Epidemiology. 1986;123(2):203–208. doi:10.1093/oxfordjournals.aje.a114229
286.
Greenland S, Maclure M, Schlesselman JJ, Poole C, Morgenstern H. Standardized Regression Coefficients. Epidemiology. 1991;2(5):387–392. doi:10.1097/00001648-199109000-00015
287.
LATTER OH. THE EGG OF CUCULUS CANORUS: AN ENQUIRY INTO THE DIMENSIONS OF THE CUCKOO’S EGO AND THE RELATION OF THE VARIATIONS TO THE SIZE OF THE EGGS OF THE FOSTER-PARENT, WITH NOTES ON COLORATION, &c. Biometrika. 1902;1(2):164–176. doi:10.1093/biomet/1.2.164
288.
Aylmer Fisher R. The arrangement of field experiments. Ministry of Agriculture and Fisheries. 1926. doi:10.23637/ROTHAMSTED.8V61Q
289.
Lakens D, Caldwell A. Simulation-Based Power Analysis for Factorial Analysis of Variance Designs. Advances in Methods and Practices in Psychological Science. 2021;4:251524592095150. doi:10.1177/2515245920951503
290.
Wasserstein RL, Lazar NA. The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician. 2016;70(2):129–133. doi:10.1080/00031305.2016.1154108
291.
Altman N, Krzywinski M. P values and the search for significance. Nature Methods. 2017;14(1):3–4. doi:10.1038/nmeth.4120
292.
Heinze G, Dunkler D. Five myths about variable selection. Transplant International. 2016;30(1):6–10. doi:10.1111/tri.12895
293.
Blume JD, D’Agostino McGowan L, Dupont WD, Greevy RA. Second-generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses. Smalheiser NR, org. PLOS ONE. 2018;13(3):e0188299. doi:10.1371/journal.pone.0188299
294.
Lakens D, Delacre M. Equivalence Testing and the Second Generation P-Value. Meta-Psychology. 2020;4. doi:10.15626/mp.2018.933
295.
Meyer F, Perrier V. esquisse: Explore and Visualize Your Data Interactively.; 2022. https://CRAN.R-project.org/package=esquisse.
296.
Diedenhofen B, Musch J. cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLOS ONE. 2015;10:e0121945. doi:10.1371/journal.pone.0121945
297.
McHugh ML. The Chi-square test of independence. Biochemia Medica. 2013:143–149. doi:10.11613/bm.2013.018
298.
Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restorative Dentistry & Endodontics. 2017;42(2):152. doi:10.5395/rde.2017.42.2.152
299.
Khamis H. Measures of Association: How to Choose? Journal of Diagnostic Medical Sonography. 2008;24(3):155–162. doi:10.1177/8756479308317006
300.
Allison JS, Santana L, (Jaco) Visagie IJH. A primer on simple measures of association taught at undergraduate level. Teaching Statistics. 2022;44(3):96–103. doi:10.1111/test.12307
301.
Dahlke JA, Wiernik BM. psychmeta: An R Package for Psychometric Meta-Analysis. Applied Psychological Measurement. 2018;43(3):415–416. doi:10.1177/0146621618795933
302.
Anscombe FJ. Graphs in Statistical Analysis. The American Statistician. 1973;27(1):17–21. doi:10.1080/00031305.1973.10478966
303.
Northrop PJ. anscombiser: Create Datasets with Identical Summary Statistics.; 2022. https://CRAN.R-project.org/package=anscombiser.
304.
Makowski D, Wiernik BM, Patil I, Lüdecke D, Ben-Shachar MS. correlation: Methods for Correlation Analysis.; 2022. https://CRAN.R-project.org/package=correlation.
305.
Lüdecke D, Ben-Shachar MS, Patil I, et al. easystats: Framework for Easy Statistical Modeling, Visualization, and Reporting.; 2022. https://easystats.github.io/easystats/.
306.
Kim JH. Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology. 2019;72(6):558–569. doi:10.4097/kja.19087
307.
Schloerke B, Cook D, Larmarange J, et al. GGally: Extension to ggplot2.; 2024. doi:10.32614/CRAN.package.GGally
308.
Arel-Bundock V. modelsummary: Data and Model Summaries in R. Journal of Statistical Software. 2022;103. doi:10.18637/jss.v103.i01
309.
Hidalgo B, Goodman M. Multivariate or Multivariable Regression? American Journal of Public Health. 2013;103(1):39–40. doi:10.2105/ajph.2012.300897
310.
Fernandes AAT, Figueiredo Filho DB, Rocha EC da, Nascimento W da S. Read this paper if you want to learn logistic regression. Revista de Sociologia e Política. 2020;28(74). doi:10.1590/1678-987320287406en
311.
Suits DB. Use of Dummy Variables in Regression Equations. Journal of the American Statistical Association. 1957;52(280):548–551. doi:10.1080/01621459.1957.10501412
312.
Healy MJ. Statistics from the inside. 16. Multiple regression (2). Archives of Disease in Childhood. 1995;73(3):270–274. doi:10.1136/adc.73.3.270
313.
Kaplan J. fastDummies: Fast Creation of Dummy (Binary) Columns and Rows from Categorical Variables.; 2023. https://CRAN.R-project.org/package=fastDummies.
314.
Sun GW, Shook TL, Kay GL. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. Journal of Clinical Epidemiology. 1996;49(8):907–916. doi:10.1016/0895-4356(96)00025-x
315.
Fox J, Weisberg S. An R Companion to Applied Regression. Sage Publications, Inc.; 2019. https://www.john-fox.ca/Companion/.
316.
DALES LG, URY HK. An Improper Use of Statistical Significance Testing in Studying Covariables. International Journal of Epidemiology. 1978;7(4):373–376. doi:10.1093/ije/7.4.373
317.
Lindsey C, Sheather S. Variable Selection in Linear Regression. The Stata Journal: Promoting communications on statistics and Stata. 2011;10(4):650–669. doi:10.1177/1536867x1001000407
318.
Miller TL based on F code by A. leaps: Regression Subset Selection.; 2024. doi:10.32614/CRAN.package.leaps
319.
Hebbali A. olsrr: Tools for Building OLS Regression Models.; 2024. doi:10.32614/CRAN.package.olsrr
320.
Leme DE da C, Alves EV da C, Lemos V do CO, Fattori A. NETWORK ANALYSIS: A MULTIVARIATE STATISTICAL APPROACH FOR HEALTH SCIENCE RESEARCH. Geriatrics, Gerontology and Aging. 2020;14(1):43–51. doi:10.5327/z2447-212320201900073
321.
Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Software: Practice and Experience. 1991;21(11):1129–1164. doi:10.1002/spe.4380211102
322.
Csárdi G, Nepusz T. The igraph software package for complex network research. Vol Complex Systems.; 2006:1695. https://igraph.org.
323.
Epskamp S, Borsboom D, Fried EI. Estimating Psychological Networks and their Accuracy: A Tutorial Paper. Vol 50.; 2018.
324.
Haslbeck JMB, Waldorp LJ. mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data. Vol 93.; 2020. doi:10.18637/jss.v093.i08
325.
Box GEP. Science and Statistics. Journal of the American Statistical Association. 1976;71(356):791–799. doi:10.1080/01621459.1976.10480949
326.
Anderson D, Heiss A, Sumners J. equatiomatic: Transform Models into LaTeX Equations.; 2024. https://CRAN.R-project.org/package=equatiomatic.
327.
Ploeg T van der, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology. 2014;14(1). doi:10.1186/1471-2288-14-137
328.
HÄGGSTRÖM O. Problem Solving is Often a Matter of Cooking Up an Appropriate Markov Chain*. Scandinavian Journal of Statistics. 2007;34(4):768–780. doi:10.1111/j.1467-9469.2007.00561.x
329.
Spedicato GA. Discrete Time Markov Chains with R. The R Journal. 2017;9(2):84–104. doi:10.32614/RJ-2017-036
330.
Bours MJL. Using mediators to understand effect modification and interaction. Journal of Clinical Epidemiology. setembro 2023. doi:10.1016/j.jclinepi.2023.09.005
331.
Altman DG, Matthews JNS. Statistics Notes: Interaction 1: heterogeneity of effects. BMJ. 1996;313(7055):486–486. doi:10.1136/bmj.313.7055.486
332.
Pinheiro J, Bates D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models.; 2023. https://CRAN.R-project.org/package=nlme.
333.
Sabanes Bove D, Dedic J, Kelkhoff D, et al. mmrm: Mixed Models for Repeated Measures.; 2022. https://CRAN.R-project.org/package=mmrm.
334.
Lenth RV. emmeans: Estimated Marginal Means, aka Least-Squares Means.; 2023. https://CRAN.R-project.org/package=emmeans.
335.
Baron RM, Kenny DA. The moderatormediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology. 1986;51(6):1173–1182. doi:10.1037/0022-3514.51.6.1173
336.
Henderson T. correctR: Corrected Test Statistics for Comparing Machine Learning Models on Correlated Samples.; 2025. https://CRAN.R-project.org/package=correctR.
337.
Diego J. Pedregal. UComp: Automatic Univariate Time Series Modelling of many Kinds.; 2025. doi:10.32614/CRAN.package.UComp
338.
Pebesma E, Bivand R. Spatial Data Science: With applications in R. CRC Press, Taylor & Francis Group; 2023. doi:10.1201/9780429459016
339.
Cheng J, Schloerke B, Karambelkar B, Xie Y, Aden-Buie G. leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library.; 2025. doi:10.32614/CRAN.package.leaflet
340.
Therneau TM. A Package for Survival Analysis in R.; 2024. https://CRAN.R-project.org/package=survival.
341.
Ali S, Abuhmed T, El-Sappagh S, et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion. 2023;99:101805. doi:10.1016/j.inffus.2023.101805
342.
Adadi A, Berrada M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access. 2018;6:52138–52160. doi:10.1109/access.2018.2870052
343.
Vilone G, Longo L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Information Fusion. 2021;76:89–106. doi:10.1016/j.inffus.2021.05.009
344.
Burger T. Keeping generative artificial intelligence reliable in omics biology. Patterns. 2026;7(1):101417. doi:10.1016/j.patter.2025.101417
345.
Korkmaz S, Goksuluk D, Karaismailoglu E. fastml: Guarded Resampling Workflows for Safe and Automated Machine Learning in R.; 2026. doi:10.32614/CRAN.package.fastml
346.
Hand DJ. Classifier Technology and the Illusion of Progress. Statistical Science. 2006;21(1). doi:10.1214/088342306000000060
347.
Andaur Navarro CL, Damen JAA, Smeden M van, et al. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. Journal of Clinical Epidemiology. 2023;154:8–22. doi:10.1016/j.jclinepi.2022.11.015
348.
Dyer EL, Kording K. Why the simplest explanation isn’t always the best. Proceedings of the National Academy of Sciences. 2023;120(52). doi:10.1073/pnas.2319169120
349.
Carriero A, Luijken K, Hond A de, Moons KGM, Calster B van, Smeden M van. The Harms of Class Imbalance Corrections for Machine Learning Based Prediction Models: A Simulation Study. Statistics in Medicine. 2025;44(3-4). doi:10.1002/sim.10320
350.
McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics. 1943;5(4):115–133. doi:10.1007/bf02478259
351.
Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review. 1958;65(6):386–408. doi:10.1037/h0042519
352.
Rosenblatt F. Perceptron Simulation Experiments. Proceedings of the IRE. 1960;48(3):301–309. doi:10.1109/jrproc.1960.287598
353.
Fritsch S, Guenther F, Wright MN. neuralnet: Training of Neural Networks.; 2019. doi:10.32614/CRAN.package.neuralnet
354.
Heckman MG, Davis JM, Crowson CS. Post Hoc Power Calculations: An Inappropriate Method for Interpreting the Findings of a Research Study. The Journal of Rheumatology. 2022;49(8):867–870. doi:10.3899/jrheum.211115
355.
Iddi S, Donohue MC. Power and Sample Size for Longitudinal Models in R – The longpower Package and Shiny App. The R Journal. 2022;14:264–282.
356.
Baranger DAA, Finsaas MC, Goldstein BL, Vize CE, Lynam DR, Olino TM. Tutorial: Power Analyses for Interaction Effects in Cross-Sectional Regressions. Advances in Methods and Practices in Psychological Science. 2023;6(3):25152459231187531. doi:10.1177/25152459231187531
357.
Rodríguez del Águila M, González-Ramírez A. Sample size calculation. Allergologia et Immunopathologia. 2014;42(5):485–492. doi:10.1016/j.aller.2013.03.008
358.
Bacchetti P. Ethics and Sample Size. American Journal of Epidemiology. 2005;161(2):105–110. doi:10.1093/aje/kwi014
359.
Ahmed SK. Sample size for saturation in qualitative research: Debates, definitions, and strategies. Journal of Medicine, Surgery, and Public Health. 2025;5:100171. doi:10.1016/j.glmedi.2024.100171
360.
Hennink M, Kaiser BN. Sample sizes for saturation in qualitative research: A systematic review of empirical tests. Social Science & Medicine. 2022;292:114523. doi:10.1016/j.socscimed.2021.114523
361.
Wutich A, Beresford M, Bernard HR. Sample Sizes for 10 Types of Qualitative Data Analysis: An Integrative Review, Empirical Guidance, and Next Steps. International Journal of Qualitative Methods. 2024;23. doi:10.1177/16094069241296206
362.
Vasileiou K, Barnett J, Thorpe S, Young T. Characterising and justifying sample size sufficiency in interview-based studies: systematic analysis of qualitative health research over a 15-year period. BMC Medical Research Methodology. 2018;18(1). doi:10.1186/s12874-018-0594-7
363.
Ying X, Robinson KA, Ehrhardt S. Re-evaluating the role of pilot trials in informing effect and sample size estimates for full-scale trials: a meta-epidemiological study. BMJ Evidence-Based Medicine. 2023;28(6):383–391. doi:10.1136/bmjebm-2023-112358
364.
Andrade C. Sample Size and its Importance in Research. Indian Journal of Psychological Medicine. 2020;42(1):102–103. doi:10.4103/ijpsym.ijpsym_504_19
365.
Bland JM, Altman DG. Statistics notes: Matching. BMJ. 1994;309(6962):1128–1128. doi:10.1136/bmj.309.6962.1128
366.
Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal. 2009;26(2):91–108. doi:10.1111/j.1471-1842.2009.00848.x
367.
Sut N. Study Designs in Medicine. Balkan Medical Journal. 2015;31(4):273–277. doi:10.5152/balkanmedj.2014.1408
368.
Souza AC de, Alexandre NMC, Guirardello E de B, Souza AC de, Alexandre NMC, Guirardello E de B. Propriedades psicométricas na avaliação de instrumentos: avaliação da confiabilidade e da validade. Epidemiologia e Serviços de Saúde. 2017;26(3):649–659. doi:10.5123/s1679-49742017000300022
369.
Reeves BC, Wells GA, Waddington H. Quasi-experimental study designs seriespaper 5: a checklist for classifying studies evaluating the effects on health interventionsa taxonomy without labels. Journal of Clinical Epidemiology. 2017;89:30–42. doi:10.1016/j.jclinepi.2017.02.016
370.
Echevarría-Guanilo ME, Gonçalves N, Romanoski PJ. PSYCHOMETRIC PROPERTIES OF MEASUREMENT INSTRUMENTS: CONCEPTUAL BASIS AND EVALUATION METHODS – PART II. Texto & Contexto – Enfermagem. 2019;28. doi:10.1590/1980-265x-tce-2017-0311
371.
Chassé M, Fergusson DA. Diagnostic Accuracy Studies. Seminars in Nuclear Medicine. 2019;49(2):87–93. doi:10.1053/j.semnuclmed.2018.11.005
372.
Chidambaram AG, Josephson M. Clinical research study designs: The essentials. PEDIATRIC INVESTIGATION. 2019;3(4):245–252. doi:10.1002/ped4.12166
373.
Erdemir A, Mulugeta L, Ku JP, et al. Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective. Journal of Translational Medicine. 2020;18(1). doi:10.1186/s12967-020-02540-4
374.
Yang B, Olsen M, Vali Y, et al. Study designs for comparative diagnostic test accuracy: A methodological review and classification scheme. Journal of Clinical Epidemiology. 2021;138:128–138. doi:10.1016/j.jclinepi.2021.04.013
375.
Chipman H, Bingham D. Let’s practice what we preach: Planning and interpreting simulation studies with design and analysis of experiments. Canadian Journal of Statistics. 2022;50(4):1228–1249. doi:10.1002/cjs.11719
376.
Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research. 2021;133:285–296. doi:10.1016/j.jbusres.2021.04.070
377.
Lim WM, Kumar S. Guidelines for interpreting the results of bibliometric analysis: A sensemaking approach. Global Business and Organizational Excellence. agosto 2023. doi:10.1002/joe.22229
378.
Trisovic A, Lau MK, Pasquier T, Crosas M. A large-scale study on research code quality and execution. Scientific Data. 2022;9(1). doi:10.1038/s41597-022-01143-6
379.
Metropolis N, Ulam S. The Monte Carlo Method. Journal of the American Statistical Association. 1949;44(247):335–341. doi:10.1080/01621459.1949.10483310
380.
Goldfeld K, Wujciak-Jens J. simstudy: Illuminating research methods through data generation. Journal of Open Source Software. 2020;5:2763. doi:10.21105/joss.02763
381.
DeBruine L. faux: Simulation for Factorial Designs.; 2023. doi:10.5281/zenodo.2669586
382.
Monks T, Currie CSM, Onggo BS, Robinson S, Kunc M, Taylor SJE. Strengthening the reporting of empirical simulation studies: Introducing the STRESS guidelines. Journal of Simulation. 2018;13(1):55–67. doi:10.1080/17477778.2018.1442155
383.
Elm E von, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Annals of Internal Medicine. 2007;147(8):573. doi:10.7326/0003-4819-147-8-200710160-00010
384.
Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software. 2012;48. doi:10.18637/jss.v048.i02
385.
Findley MG, Kikuta K, Denly M. External Validity. Annual Review of Political Science. 2021;24(1):365–393. doi:10.1146/annurev-polisci-041719-102556
386.
Scott WA. Reliability of Content Analysis: The Case of Nominal Scale Coding. Public Opinion Quarterly. 1955;19(3):321. doi:10.1086/266577
387.
Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement. 1960;20(1):37–46. doi:10.1177/001316446002000104
388.
Gamer M, Lemon J, Ian Fellows Puspendra Singh. irr: Various Coefficients of Interrater Reliability and Agreement.; 2019. doi:10.32614/CRAN.package.irr
389.
Mathews I, Pearson K. I. Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character. 1901;195(262-273):1–47. doi:10.1098/rsta.1900.0022
390.
Banerjee M, Capozzoli M, McSweeney L, Sinha D. Beyond kappa: A review of interrater agreement measures. Canadian Journal of Statistics. 1999;27(1):3–23. doi:10.2307/3315487
391.
William Revelle. psych: Procedures for Psychological, Psychometric, and Personality Research.; 2023. https://CRAN.R-project.org/package=psych.
392.
Lehnert B. BlandAltmanLeh: Plots (Slightly Extended) Bland-Altman Plots.; 2015. https://CRAN.R-project.org/package=BlandAltmanLeh.
393.
Contributors semTools. semTools: Useful tools for structural equation modeling.; 2016. https://CRAN.R-project.org/package=semTools.
394.
Quartagno M, Carpenter J. jomo: A package for Multilevel Joint Modelling Multiple Imputation.; 2023. https://CRAN.R-project.org/package=jomo.
395.
Gagnier JJ, Lai J, Mokkink LB, Terwee CB. COSMIN reporting guideline for studies on measurement properties of patient-reported outcome measures. Quality of Life Research. 2021;30(8):2197–2218. doi:10.1007/s11136-021-02822-4
396.
Streiner DL, Kottner J. Recommendations for reporting the results of studies of instrument and scale development and testing. Journal of Advanced Nursing. 2014;70(9):1970–1979. doi:10.1111/jan.12402
397.
Kottner J, Audigé L, Brorson S, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. Journal of Clinical Epidemiology. 2011;64(1):96–106. doi:10.1016/j.jclinepi.2010.03.002
398.
Steckelberg A, Balgenorth A, Berger J, Mühlhauser I. Explaining computation of predictive values: 2 × 2 table versus frequency tree. A randomized controlled trial [ISRCTN74278823]. BMC Medical Education. 2004;4(1). doi:10.1186/1472-6920-4-13
399.
Greenhalgh T. How to read a paper: Papers that report diagnostic or screening tests. BMJ. 1997;315(7107):540–543. doi:10.1136/bmj.315.7107.540
400.
Neth H, Gaisbauer F, Gradwohl N, Gaissmaier W. riskyr: Rendering Risk Literacy more Transparent.; 2022. https://CRAN.R-project.org/package=riskyr.
401.
Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PMM. The diagnostic odds ratio: a single indicator of test performance. Journal of Clinical Epidemiology. 2003;56(11):1129–1135. doi:10.1016/s0895-4356(03)00177-x
402.
Kuhn, Max. Building Predictive Models in R Using the caret Package. Journal of Statistical Software. 2008;28(5):1–26. doi:10.18637/jss.v028.i05
403.
Xu J, Zhang Y, Miao D. Three-way confusion matrix for classification: A measure driven view. Information Sciences. 2020;507:772–794. doi:10.1016/j.ins.2019.06.064
404.
He Z, Zhang Q, Song M, Tan X, Wang W. Four overlooked errors in ROC analysis: how to prevent and avoid. BMJ Evidence-Based Medicine. 2024;30(3):208–211. doi:10.1136/bmjebm-2024-113078
405.
Park SH, Goo JM, Jo CH. Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists. Korean Journal of Radiology. 2004;5(1):11. doi:10.3348/kjr.2004.5.1.11
406.
Park SH, Goo JM, Jo CH. UniODA vs ROC Analysis: Computing the “optimal” cut-point. Optimal Data Analysis. 2014;3(14):117–120. https://odajournal.com/wp-content/uploads/2019/01/v3a29.pdf.
407.
Hond AAH de, Steyerberg EW, Calster B van. Interpreting area under the receiver operating characteristic curve. The Lancet Digital Health. 2022;4(12):e853–e855. doi:10.1016/s2589-7500(22)00188-1
408.
Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77
409.
Ferreira ADS, Meziat-Filho N, Ferreira APA. Double threshold receiver operating characteristic plot for three-modal continuous predictors. Computational Statistics. 2021;36(3):2231–2245. doi:10.1007/s00180-021-01080-9
410.
Phillips B, Stewart LA, Sutton AJ. ‘Cross hairs’ plots for diagnostic meta-analysis. Research Synthesis Methods. 2010;1(3-4):308–315. doi:10.1002/jrsm.26
411.
Sousa-Pinto PD with contributions from B. mada: Meta-Analysis of Diagnostic Accuracy.; 2022. https://CRAN.R-project.org/package=mada.
412.
Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. outubro 2015:h5527. doi:10.1136/bmj.h5527
413.
Reeves BC, Gaus W. Guidelines for Reporting Non-Randomised Studies. Complementary Medicine Research. 2004;11(1):46–52. doi:10.1159/000080576
414.
Bland JM, Altman DG. Comparisons within randomised groups can be very misleading. BMJ. 2011;342(may06 2):d561–d561. doi:10.1136/bmj.d561
415.
Bruce CL, Juszczak E, Ogollah R, Partlett C, Montgomery A. A systematic review of randomisation method use in RCTs and association of trial design characteristics with method selection. BMC Medical Research Methodology. 2022;22(1). doi:10.1186/s12874-022-01786-4
416.
Vickers AJ, Altman DG. Statistics Notes: Analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323(7321):1123–1124. doi:10.1136/bmj.323.7321.1123
417.
O Connell NS, Dai L, Jiang Y, et al. Methods for Analysis of Pre-Post Data in Clinical Research: A Comparison of Five Common Methods. Journal of Biometrics & Biostatistics. 2017;08(01). doi:10.4172/2155-6180.1000334
418.
Laird N. Further Comparative Analyses of Pretest-Posttest Research Designs. The American Statistician. 1983;37(4a):329–330. doi:10.1080/00031305.1983.10483133
419.
Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine. 1997;16(20):2349–2380. doi:10.1002/(sici)1097-0258(19971030)16:20<2349::aid-sim667>3.0.co;2-e
420.
Mallinckrodt CH, Lane PW, Schnell D, Peng Y, Mancuso JP. Recommendations for the Primary Analysis of Continuous Endpoints in Longitudinal Clinical Trials. Drug Information Journal. 2008;42(4):303–319. doi:10.1177/009286150804200402
421.
Assmann SF, Pocock SJ, Enos LE, Kasten LE. Subgroup analysis and other (mis)uses of baseline data in clinical trials. The Lancet. 2000;355(9209):1064–1069. doi:10.1016/s0140-6736(00)02039-0
422.
Stang A, Baethge C. Imbalance <em>p</em> values for baseline covariates in randomized controlled trials: a last resort for the use of <em>p</em> values? A pro and contra debate. Clinical Epidemiology. 2018;Volume 10:531–535. doi:10.2147/clep.s161508
423.
Bolzern JE, Mitchell A, Torgerson DJ. Baseline testing in cluster randomised controlled trials: should this be done? BMC Medical Research Methodology. 2019;19(1). doi:10.1186/s12874-019-0750-8
424.
Lavori PW, Louis TA, Bailar JC, Polansky M. Designs for Experiments Parallel Comparisons of Treatment. New England Journal of Medicine. 1983;309(21):1291–1299. doi:10.1056/nejm198311243092105
425.
Altman DG. Comparability of Randomised Groups. The Statistician. 1985;34(1):125. doi:10.2307/2987510
426.
Altman DG, Doré CJ. Randomisation and baseline comparisons in clinical trials. The Lancet. 1990;335(8682):149–153. doi:10.1016/0140-6736(90)90014-v
427.
Roberts C, Torgerson DJ. Understanding controlled trials: Baseline imbalance in randomised controlled trials. BMJ. 1999;319(7203):185–185. doi:10.1136/bmj.319.7203.185
428.
Gruijters SLK. Baseline comparisons and covariate fishing: Bad statistical habits we should have broken yesterday. julho 2020. http://dx.doi.org/10.31234/osf.io/qftwg.
429.
Vickers AJ. The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study. BMC Medical Research Methodology. 2001;1(1). doi:10.1186/1471-2288-1-6
430.
Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; Journal of Clinical Epidemiology. 2004;57(3):229–236. doi:10.1016/j.jclinepi.2003.08.009
431.
Matthews JNS, Altman DG. Statistics Notes: Interaction 2: compare effect sizes not P values. BMJ. 1996;313(7060):808–808. doi:10.1136/bmj.313.7060.808
432.
Altman DG. Statistics Notes: Interaction revisited: the difference between two estimates. BMJ. 2003;326(7382):219–219. doi:10.1136/bmj.326.7382.219
433.
Hauck WW, Anderson S, Marcus SM. Should We Adjust for Covariates in Nonlinear Regression Analyses of Randomized Trials? Controlled Clinical Trials. 1998;19(3):249–256. doi:10.1016/s0197-2456(97)00147-5
434.
Kahan BC, Jairath V, Doré CJ, Morris TP. The risks and rewards of covariate adjustment in randomized trials: an assessment of 12 outcomes from 8 studies. Trials. 2014;15(1). doi:10.1186/1745-6215-15-139
435.
Cao Y, Allore H, Vander Wyk B, Gutman R. Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables. Statistics in Medicine. outubro 2022. doi:10.1002/sim.9592
436.
Schulz KF. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomized Trials. Annals of Internal Medicine. 2010;152(11):726. doi:10.7326/0003-4819-152-11-201006010-00232
437.
Dayim A. consort: Create Consort Diagram.; 2023. https://CRAN.R-project.org/package=consort.
438.
Dwan K, Li T, Altman DG, Elbourne D. CONSORT 2010 statement: extension to randomised crossover trials. BMJ. julho 2019:l4378. doi:10.1136/bmj.l4378
439.
Senn S. The analysis of continuous data from n-of-1 trials using paired cycles: a simple tutorial. Trials. 2024;25(1). doi:10.1186/s13063-024-07964-7
440.
Chatters R, Hawksworth O, Julious S, Cook A. The development of a set of key points to aid clinicians and researchers in designing and conducting n-of-1 trials. Trials. 2024;25(1). doi:10.1186/s13063-024-08261-z
441.
Sarkar D. Lattice: Multivariate Data Visualization with R.; 2008. http://lmdvr.r-forge.r-project.org.
442.
Baker KA, Weeks SM. An Overview of Systematic Review. Journal of PeriAnesthesia Nursing. 2014;29(6):454–458. doi:10.1016/j.jopan.2014.07.002
443.
Fantini D. easyPubMed: Search and Retrieve Scientific Publication Records from PubMed.; 2019. doi:10.32614/CRAN.package.easyPubMed
444.
Chamberlain S, Zhu H, Jahn N, Boettiger C, Ram K. rcrossref: Client for Various CrossRef APIs.; 2022. doi:10.32614/CRAN.package.rcrossref
445.
Jahn N. roadoi: Find Free Versions of Scholarly Publications via Unpaywall.; 2024. doi:10.32614/CRAN.package.roadoi
446.
Silva V, Grande AJ, Martimbianco ALC, Riera R, Carvalho APV. Overview of systematic reviews - a new type of study: part I: why and for whom? Sao Paulo Medical Journal. 2012;130(6):398–404. doi:10.1590/s1516-31802012000600007
447.
Silva V, Grande AJ, Carvalho APV de, Martimbianco ALC, Riera R. Overview of systematic reviews - a new type of study. Part II. Sao Paulo Medical Journal. 2014;133(3):206–217. doi:10.1590/1516-3180.2013.8150015
448.
Stern C, Li J, Stone J, et al. Data analysis and presentation methods in umbrella reviews/overviews of reviews in health care: A cross-sectional study. Research Synthesis Methods. outubro 2025:1–15. doi:10.1017/rsm.2025.10040
449.
Snell KIE, Levis B, Damen JAA, et al. Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: checklist for systematic reviews and meta-analyses (TRIPOD-SRMA). BMJ. maio 2023:e073538. doi:10.1136/bmj-2022-073538
450.
Moons KGM, Groot JAH de, Bouwmeester W, et al. Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. PLoS Medicine. 2014;11(10):e1001744. doi:10.1371/journal.pmed.1001744
451.
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods. 2010;1(2):97–111. doi:10.1002/jrsm.12
452.
Viechtbauer W. Conducting meta-analyses in R with the metafor package. Vol 36.; 2010. doi:10.18637/jss.v036.i03
453.
Balduzzi S, Rücker G, Nikolakopoulou A, et al. netmeta: An R Package for Network Meta-Analysis Using Frequentist Methods. Journal of Statistical Software. 2023;106(2):1–40. doi:10.18637/jss.v106.i02
454.
Valkenhoef G van, Kuiper J. gemtc: Network Meta-Analysis Using Bayesian Methods.; 2025. doi:10.32614/CRAN.package.gemtc
455.
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology. 2005;5(1). doi:10.1186/1471-2288-5-13
456.
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology. 2014;14(1). doi:10.1186/1471-2288-14-135
457.
Borenstein M. In a meta-analysis, the I-squared statistic does not tell us how much the effect size varies. Journal of Clinical Epidemiology. outubro 2022. doi:10.1016/j.jclinepi.2022.10.003
458.
Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I 2 in assessing heterogeneity may mislead. BMC Medical Research Methodology. 2008;8(1). doi:10.1186/1471-2288-8-79
459.
Grooth HJ de, Parienti JJ. Heterogeneity between studies can be explained more reliably with individual patient data. Intensive Care Medicine. julho 2023. doi:10.1007/s00134-023-07163-z
460.
Dettori JR, Norvell DC, Chapman JR. Seeing the Forest by Looking at the Trees: How to Interpret a Meta-Analysis Forest Plot. Global Spine Journal. 2021;11(4):614–616. doi:10.1177/21925682211003889
461.
Song, Eastwood, Gilbody, Duley, Sutton. Publication and related biases. Health Technology Assessment. 2000;4(10). doi:10.3310/hta4100
462.
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–634. doi:10.1136/bmj.315.7109.629
463.
Peters JL. Comparison of Two Methods to Detect Publication Bias in Meta-analysis. JAMA. 2006;295(6):676. doi:10.1001/jama.295.6.676
464.
Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343(jul22 1):d4002–d4002. doi:10.1136/bmj.d4002
465.
Duval S, Tweedie R. Trim and Fill: A Simple Funnel-PlotBased Method of Testing and Adjusting for Publication Bias in Meta-Analysis. Biometrics. 2000;56(2):455–463. doi:10.1111/j.0006-341x.2000.00455.x
466.
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine. 2021;18(3):e1003583. doi:10.1371/journal.pmed.1003583
467.
Lajeunesse MJ. Facilitating systematic reviews, data extraction, and meta-analysis with the metagear package for R. Methods in Ecology and Evolution. 2016;7(3):323–330. doi:10.1111/2041-210X.12472
468.
Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews. 2015;4(1). doi:10.1186/2046-4053-4-1
469.
Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews. 2022;18:e1230. doi:10.1002/cl2.1230
470.
Gates M, Gates A, Pieper D, et al. Reporting guideline for overviews of reviews of healthcare interventions: development of the PRIOR statement. BMJ. agosto 2022:e070849. doi:10.1136/bmj-2022-070849
471.
O’Cathain A, Thomas KJ, Drabble SJ, Rudolph A, Hewison J. What can qualitative research do for randomised controlled trials? A systematic mapping review. BMJ Open. 2013;3(6):e002889. doi:10.1136/bmjopen-2013-002889
472.
O’Brien BC, Harris IB, Beckman TJ, Reed DA, Cook DA. Standards for Reporting Qualitative Research. Academic Medicine. 2014;89(9):1245–1251. doi:10.1097/acm.0000000000000388
473.
Tong A, Flemming K, McInnes E, Oliver S, Craig J. Enhancing transparency in reporting the synthesis of qualitative research: ENTREQ. BMC Medical Research Methodology. 2012;12(1). doi:10.1186/1471-2288-12-181
474.
Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. International Journal for Quality in Health Care. 2007;19(6):349–357. doi:10.1093/intqhc/mzm042
475.
Zikmund-Fisher BJ, Thorpe A, Fagerlin A. How to Communicate Medical Numbers. JAMA. 2025;334(16):1474. doi:10.1001/jama.2025.13655
476.
Makowski D, Lüdecke D, Patil I, Thériault R, Ben-Shachar MS, Wiernik BM. Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption.; 2023. https://easystats.github.io/report/.
477.
Nuijten MB, Epskamp S. statcheck: Extract Statistics from Articles and Recompute P-Values.; 2024. doi:10.32614/CRAN.package.statcheck
478.
Wallisch C, Bach P, Hafermann L, et al. Review of guidance papers on regression modeling in statistical series of medical journals. Mathes T, org. PLOS ONE. 2022;17(1):e0262918. doi:10.1371/journal.pone.0262918
479.
Lynggaard H, Bell J, Lösch C, et al. Principles and recommendations for incorporating estimands into clinical study protocol templates. Trials. 2022;23(1). doi:10.1186/s13063-022-06515-2
480.
Althouse AD, Below JE, Claggett BL, et al. Recommendations for Statistical Reporting in Cardiovascular Medicine: A Special Report From the American Heart Association. Circulation. 2021;144(4). doi:10.1161/circulationaha.121.055393
481.
Lee KJ, Tilling KM, Cornish RP, et al. Framework for the treatment and reporting of missing data in observational studies: The Treatment And Reporting of Missing data in Observational Studies framework. Journal of Clinical Epidemiology. 2021;134:79–88. doi:10.1016/j.jclinepi.2021.01.008
482.
Vickers AJ, Assel MJ, Sjoberg DD, et al. Guidelines for Reporting of Figures and Tables for Clinical Research in Urology. Urology. 2020;142:1–13. doi:10.1016/j.urology.2020.05.002
483.
Assel M, Sjoberg D, Elders A, et al. Guidelines for Reporting of Statistics for Clinical Research in Urology. Journal of Urology. 2019;201(3):595–604. doi:10.1097/ju.0000000000000001
484.
Lang TA, Altman DG. Basic statistical reporting for articles published in Biomedical Journals: The “Statistical Analyses and Methods in the Published Literature” or the SAMPL Guidelines. International Journal of Nursing Studies. 2015;52(1):5–9. doi:10.1016/j.ijnurstu.2014.09.006
485.
Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLOS Biology. 2015;13(4):e1002128. doi:10.1371/journal.pbio.1002128
486.
Sauerbrei W, Abrahamowicz M, Altman DG, Cessie S, Carpenter J. STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative. Statistics in Medicine. 2014;33(30):5413–5432. doi:10.1002/sim.6265
487.
Groves T. Research methods and reporting. BMJ. 2008;337(oct22 1):a2201–a2201. doi:10.1136/bmj.a2201
488.
Stratton IM, Neil A. How to ensure your paper is rejected by the statistical reviewer. Diabetic Medicine. 2005;22(4):371–373. doi:10.1111/j.1464-5491.2004.01443.x
489.
Mansournia MA, Collins GS, Nielsen RO, et al. A CHecklist for statistical Assessment of Medical Papers (the CHAMP statement): explanation and elaboration. British Journal of Sports Medicine. 2021;55(18):1009–1017. doi:10.1136/bjsports-2020-103652
490.
Gil-Sierra MD, Fénix-Caballero S, Abdel kader-Martin L, et al. Checklist for clinical applicability of subgroup analysis. Journal of Clinical Pharmacy and Therapeutics. 2019;45(3):530–538. doi:10.1111/jcpt.13102
491.
Lee H, Cashin AG, Lamb SE, et al. A Guideline for Reporting Mediation Analyses of Randomized Trials and Observational Studies. JAMA. 2021;326(11):1045. doi:10.1001/jama.2021.14075